Tetrahedron Letters, Vol. 26, No. 26, Dp 3125-3126, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd. IDENTIFICATION OF THE 2-HYDROXYMETHYL-3, 4-DIHYDROXYPYRROLIDINE (OR 1,4-DIDEOXY-1,4-IMINOPENTITOL) FROM <u>ANGYLOCALYX BOUTIQUEANUS</u> AND FROM <u>ARACHNIODES STANDISHII</u> AS THE (2R, 3R, 4S)-ISOMER BY THE SYNTHESIS OF ITS ENANTIOMER.

D. Wyn C. Jones^a, Robert J. Nash^b, E. Arthur Bell^b and J. Michael Williams^{a*}, ^aChemistry Department, University College, Swansea SA2 8PP. ^bJodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, U.K.

<u>Summary</u>. The <u>D</u>-xylo and <u>L</u>-arabino isomers of 1,4-dideoxy-1,4-iminopentitol have been synthesised from <u>L</u>-arabinose, and the <u>L</u>-arabino isomer was found to be the enantiomer of the alkaloid from <u>Angylocalyx Boutiqueanus</u>. The alkaloid from <u>Arachniodes Standishii</u>, recently reported to have the xylo configuration, was also shown to be the <u>D</u>-arabino isomer.

Naturally occurring hydroxylated piperidine derivatives such as 1,5-dideoxy-1,5-imino- \underline{D} -mannitol¹ and 1,5-dideoxy-1,5-imino- \underline{D} -glucitol (deoxynojirimycin)² are of considerable current interest because of their inhibitory action on glycosidases^{2,3}. A 1,4-dideoxy-1,4-iminopent-itol (1) recently isolated from <u>Arachniodes Standishii</u> was assigned the xylo configuration on the basis of proton-proton coupling constants. We have recently reported the identification of two new pyrrolidine derivatives namely 2-hydroxymethyl-3,4-dihydroxyrrolidine (1) of unknown configuration⁵ and (2<u>R</u>, 3<u>S</u>)-2-hydroxymethyl-3-hydroxypyrrolidine⁶. The former pyrrolidine derivative has now been identified as 1,4-dideoxy-1,4-imino-<u>D</u>-arabinitol by synthesis of its enantiomer.

The <u>D</u>-xylo isomer of (1) was first synthesised from 4-azido-4-deoxy-<u>D</u>-xylose⁷ which is readily prepared in six steps from <u>L</u>-arabinose. Catalytic hydrogenation of the azide over palladium in methanol containing acetic acid first formed the primary amine and reductive amination⁸ then followed to give 1,4-dideoxy-1,4-imino-<u>D</u>-xylitol⁹ as the acetate salt in 88% yield [$\delta_c(D_20)$ 77.1(X2), 65.7, 60.0, 53.3 with dioxane reference at 69.3 p.p.m]. The hydrochloride had [α]²⁰_D + 12° (H₂0) and gave the same chemical shifts which are different from those reported⁴ for the alkaloid from <u>Arachniodes Standishii</u>.

The <u>L</u>-arabino isomer of (1) was also synthesised from <u>L</u>-arabinose by means of a double inversion at C-4. This was accomplised in two ways. Methyl 2,3-di-<u>O</u>-benzoyl- β -<u>L</u>-arabinopyranoside⁷ was quantitatively converted into the triflate (m.p. 119-121°) which on reaction with sodium nitrite in DMF at room temperature¹⁰ gave methyl 2,3-di-<u>O</u>-benzoyl- α -<u>P</u>-xylopyranoside (m.p. 129-131°, 81%). The <u>P</u>-xylo configuration was confirmed by the proton n.m.r. spectrum; the two pyranose protons deshielded by the benzoyloxy groups were double doublets at δ 5.69 (H-3, J_{3,4} 8.5, J_{2,3} 10.0 Hz) and 5.20 (H-2, J_{1,2} 3.7 Hz); H-4 gave a multiplet at δ 4.0. The derived 4-O-tosylate (m.p. 180-183; 81%) was reacted with sodium azide in DMF at 100°C to give methyl 4-azido-2,3-di-<u>O</u>-benzoyl-4-deoxy- β -<u>L</u>-arabinopyranoside (m.p. 104-105.5°, 85%, J_{3,4} 4 Hz).

Alternatively the double inversion and introduction of the azide function at C-4 could be effected in two steps by reacting methyl β -L-arabinoside 2,3-dibenzoate with triphenyl-phosphine and 2,4,5-tribromoimidazole¹¹ to form the methyl 2,3-di-O-benzoyl-4-bromo-4-deoxy-D-xylopyranoside¹² in 81% yield (after chromatography, n.p. 112-114.5°). This bromide reacted cleanly with sodium azide in DMF at 86° over three days to form the L-arabinoside azide in 81% yield. This two step conversion of methyl 2,3-di-O-benzoyl- β -L-arabinopyranoside into

the 4-azido-4-deoxy- $L_{=}$ -arabinoside via the bromide (overall yield 66%) was more efficient than the four steps above via the triflate (overall yield 56%). The bromide required column chromatography for isolation whereas the triflate involved the use of the relatively expensive triflic anhydride.

Debenzoylation of the azide dibenzoate with methanolic sodium methoxide gave methyl 4-azido-4-deoxy- β - \underline{L} -arabinopyranoside (2), (m.p. 86-88°). Acid hydrolysis and catalytic hydrogenation⁸ over palladium in aqueous acetic acid gave 1,4-dideoxy-1,4-imino- \underline{L} -arabinitol as a syrup which, after treatment with Amberlite CG 400 (OH⁻ form), was identical by ¹H and ¹³C n.m.r. spectroscopy to the natural product⁵. The hydrochloride had $[\alpha]_{578}^{20}$ - 22°(H₂0) and was the enantiomer of the <u>Angylocalyx Boutiqueanus</u> alkaloid which has $[\alpha]_{578}^{20}$ + 25° (± 3°) (c, 0.3 in H₂0). The ¹³C chemical shifts of the hydrochloride were identical to those reported for the <u>Arachniodes Standishii</u> alkaloid⁴ which must therefore have the arabino configuration. The specific rotation (+ 4.7° at 550 and 589 Å) of this alkaloid implies the <u>D</u>-enantiomer, although the values are not in good agreement¹³.

REFERENCES

- 1. L.E. Fellows, E.A. Bell, D.G. Lynn and K. Nakanishi, J.Chem.Soc.Chem.Commun., 1979, 977.
- 2. D.D. Schmidt, W. Frommer, L. Muller and E. Truscheit, Naturwiss., 1979, 66, 384.
- 3. R.T. Schwarz and R. Datema, <u>Trends Biochem.Sci.</u>, 1984, <u>9</u>, 32; S.V. Evans, L.E. Fellows and E.A. Bell, Phytochemistry, 1983, 22, 768.
- 4. J. Furukawa, S. Okuda, K. Saito and S. Hatanoka, Phytochemistry, 1985, 24, 593.
- 5. R.J. Nash, J.M. Williams and E.A. Bell, Phytochemistry, 1985, in press.
- 6. R.J. Nash, E.A. Bell, G.W.J. Fleet, R.H. Jones and J.M. Williams, J.C.S.Chem.Commun. 1985
- 7. E.J. Reist, L.V. Fisher and L. Goodman, J.Org.Chem., 1967, 32, 2541. in press.
- 8. Complete reaction required several days.
- 9. Satisfactory spectral and/or analytical data were obtained for all new compounds in this paper.
- 10. R. Albert, K. Dax and A.E. Stutz, <u>Carbohydr.Res.</u>, 1984, <u>132</u>, 162.
- 11. B. Classon, P.J. Garegg and B. Samuelson, Can.J.Chem., 1981, 59, 339.
- 12. We are indebted to Mr. Ian Mathews for the preparation of this compound.
- 13. A SERC postgraduate award (to D.W.C.J.) is gratefully acknowledged.

(Received in UK 10 April 1985)